1,587
Views
20
CrossRef citations to date
0
Altmetric
Review Articles

Detection Strategies of Zearalenone for Food Safety: A Review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 294-313 | Published online: 26 Jul 2020
 

Abstract

Zearalenone (ZEN) is a toxic compound produced by the metabolism of fungi (genus Fusarium) that threaten the food and agricultural industry belonging to the in foods and feeds. ZEN has toxic effects on human and animal health due to its mutagenicity, teratogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. To ensure food safety, rapid, precise, and reliable analytical methods can be developed for the detection of toxins such as ZEN. Different selective molecular diagnostic elements are used in conjunction with different detection strategies to achieve this goal. In this review, the use of electrochemical, colorimetric, fluorometric, refractometric as well as other strategies were discussed for ZEN detection. The success of the sensors in analytical performance depends on the development of receptors with increased affinity to the target. This requirement has been met with different immunoassays, aptamer-assays, and molecular imprinting techniques. The immobilization techniques and analysis strategies developed with the combination of nanomaterials provided high precision, reliability, and convenience in ZEN detection, in which electrochemical strategies perform the best.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 451.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.