897
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Overview and Future Perspectives of Microfluidic Digital Recombinase Polymerase Amplification (dRPA)

, , , &
Pages 1969-1989 | Published online: 24 Feb 2022
 

abstract

Digital recombinase polymerase amplification (dRPA) aims to quantify the initial amount of nucleic acid by dividing nucleic acid and all reagents required for the RPA reaction evenly into numerous individual reaction units, such as chambers or droplets. dRPA turns out to be a prominent technique for quantifying the absolute quantity of target nucleic acid because of its advantages including low equipment requirements, short time consumption, as well as high sensitivity and specificity. dRPA combined with microfluidics are recognized as simple, various, and high-throughput nucleic acid quantization systems. This paper classifies the microfluidic dRPA systems over the last decade. We analyze and summarize the vital technologies of various microfluidic dRPA systems (e.g., chip preparation process, segmentation principle, microfluidic control, and statistical analysis methods), and major efforts to address limitations (e.g., prevention of evaporation and contamination, accurate initiation, and reduction of manual operation). In addition, this paper summarizes key factors and potential constraints to the success of the microfluidic dRPA to help more researchers, and possible strategies to overcome the mentioned challenges. Lastly, actual suggestions and strategies are proposed for the subsequent development of microfluidic dRPA.

Acknowledgments

We gratefully acknowledge the copyright owners for reprinting and quoting.

Disclosure statement

No potential conflict of interest was reported by the authors.

Data availability statement

The authors confirm that the data supporting the discussion of this review is available within the paper.

Additional information

Funding

The review reported in this publication was supported by Major Project of Science and Technology of China (Grant No: 2017ZX10304403).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 451.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.