843
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

A Critical Review on Organic Small Fluorescent Probes for Monitoring Carbon Monoxide in Biology

ORCID Icon, , , &
Pages 1792-1806 | Published online: 03 Mar 2022
 

Abstract

Endogenous carbon monoxide (CO) is an important intracellular gas messenger that is intimately involved in many physiological and pathological processes. The abnormal concentration of CO in living organisms can cause many diseases. Therefore, it is of great significance to monitor CO in biological samples. Fluorescent probe technology provides an effective and convenient method for CO monitoring, with the advantages of high selectivity and sensitivity, fast response time and in situ fluorescence imaging in biological tissues, which is favored by the majority of researchers. In this paper, the research progress of CO fluorescent probes since 2018 is reviewed, and the design, detection mechanism and biological application of the related fluorescent probes are summarized. And the relationship between the structure and performance of the probes is discussed. Furthermore, the development trend and application prospect of CO fluorescent probes are prospected.

Additional information

Funding

This work was supported by Guangxi Science and Technology Base and Special Fund for Talents (AD19110056), National Natural Science Foundation of China (32060521) and Natural Science Foundation of Guangxi (2020GXNSFDA297023).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 451.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.