571
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Carbon Nanomaterials-Based Novel Hybrid Platforms for Electrochemical Sensor Applications in Drug Analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Published online: 09 Aug 2022
 

Abstract

Nowadays, the rapid improvements in the medical and pharmaceutical fields increase the diversity and use of drugs. However, problems such as the use of multiple or combined drugs in the treatment of diseases and insensible use of over-the-counter drugs have caused concerns about the side-effect profiles and therapeutic ranges of drugs and environmental contamination and pollution problems due to pharmaceuticals waste. Therefore, the analysis of drugs in various media such as biological, pharmaceutical, and environmental samples is an important topic of discussion. Electrochemical methods are advantageous for sensor applications due to their easy application, low cost, versatility, high sensitivity, and environmentally-friendliness. Carbon nanomaterials such as diamond-like carbon thin films, carbon nanotubes, carbon nanofibers, graphene oxide, and nanodiamonds are used to enhance the performance of the electrochemical sensors with catalytic effects. To further improve this effect, it is aimed to create hybrid platforms by using different carbon nanomaterials together or with materials such as conductive polymers and ionic liquids. In this review, the most used carbon nanoforms will be evaluated in terms of electrochemical characterizations and physicochemical properties. Furthermore, the effect of hybrid platforms developed in the most recent studies on electrochemical sensors will be examined and evaluated in terms of drug analysis studies in the last five years.

Additional information

Funding

Ahmet Cetinkaya thanks the financial support from the Council of Higher Education 100/2000 (YOK) under the special 100/2000 scholarship program and the Scientific and Technological Research Council of Turkey (TUBITAK) under the BIDEB/2211-A Ph.D. Fatma Budak thanks the financial supports from Technological Research Council of Turkey (TUBITAK) under the ARDEB/1004 Ph.D. Scholarship Programmes.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 451.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.