1,200
Views
55
CrossRef citations to date
0
Altmetric
Original Articles

Pretreatments for the Efficient Extraction of Bioactive Compounds from Plant-Based Biomaterials

, , &
Pages 1283-1297 | Published online: 24 Feb 2014
 

Abstract

The extraction of medicinal or functional compounds from herbal plants is an important unit operation in food and bio-industries. The target compounds are generally present inter- or intra-cellularly in an intricate microstructure formed by cells, intercellular spaces, capillaries, and pores. The major resistance of molecular diffusion in materials of plant origin always comes from the intact cell walls and adhering membranes. Therefore, increasing the permeability of cell walls and membranes plays a very important role to increase extraction yield and/or extraction rate.

Important pretreatment methods to modify the cellular structures and increase the permeability of cell walls or membranes are discussed in this paper. They include physical, biologic, and chemical treatments. In physical methods, mechanical disruption, high-pressure (HP) process, pulsed electric field (PEF) application, ultrasonic treatment, and freeze–thaw, and so on were applied. In biologic methods, different cell wall-degrading enzymes were applied to break-down cell walls or membranes and to diminish the overall internal resistance for transporting bioactive compounds from internal matrix to the external solution. In chemical methods, various chemicals for increasing the inner- or outer-membrane permeabilization were introduced. The principles of the technologies, examples of improvements, and advantages and disadvantages of the pretreatment methods are critically reviewed in this paper.

ACKNOWLEDGMENT

The authors gratefully thank the Natural Science and Engineering Research Council of Canada (NSERC) and the Agricultural Bioproducts Innovation Program (ABIP).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.