853
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Integrating omics to unravel the stress-response mechanisms in probiotic bacteria: Approaches, challenges, and prospects

&
Pages 3464-3471 | Published online: 25 May 2017
 

ABSTRACT

Identifying the stress-response mechanism of probiotic bacteria has always captivated the interest of food producers. It is crucial to identify probiotic bacteria that have increased stress tolerance to survive during production, processing, and storage of food products. However, in order to achieve high resistance to environmental factors, there is a need to better understand stress-induced responses and adaptive mechanisms. With advances in bacterial genomics, there has been an upsurge in the application of other omic platforms such as transcriptomics, proteomics, metabolomics, and some more recent ones such as interactomics, fluxomics, and phenomics. These omic technologies have revolutionized the functional genomics and their application. There have been several studies implementing various omic technologies to investigate the stress responses of probiotic bacteria. Integrated omics has the potential to provide in-depth information about the mechanisms of stress-induced responses in bacteria. However, there remain challenges in integrating information from different omic platforms. This review discusses current omic techniques and challenges faced in integrating various omic platforms with focus on their use in stress-response studies.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.