1,023
Views
28
CrossRef citations to date
0
Altmetric
Articles

Biotechnological potential of microbial inulinases: Recent perspective

, , &
Pages 3818-3829 | Published online: 21 Sep 2017
 

ABSTRACT

Among microbial enzymes, inulinases or fructo-furanosylhydrolases have received considerable attention in the past decade, and as a result, a variety of applications based on enzymatic hydrolysis of inulin have been documented. Inulinases are employed for generation of fructose and inulo-oligosaccharides (IOS) in a single-step reaction with specificity. The high fructose syrup can be biotransformed into value-added products such as ethanol, single cell protein, while IOS are indicated in nutraceutical industry as prebiotic. Myriad microorganisms produce inulinases, and a number of exo- and endo-inulinases have been characterized and expressed in heterologous hosts. Initially, predominated by Aspergilli, Penicillia, and some yeasts (Kluyveromyces spp.), the list of prominent inulinase producers has gradually expanded and now includes extremophilic prokaryotes and marine-derived microorganisms producing robust inulinases. The present paper summarizes important developments about microbial inulinases and their applications made in the last decade.

Funding

Authors are thankful to Madhya Pradesh Biotechnology Council (MPBC), Bhopal, project – (PA-23/656) India, for financial assistance in the form of major research project to Naveen Kango.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.