1,672
Views
52
CrossRef citations to date
0
Altmetric
Articles

Aqueous chlorine dioxide treatment of horticultural produce: Effects on microbial safety and produce quality–A review

, &
Pages 318-333 | Published online: 28 Jun 2017
 

ABSTRACT

Microbial load on fresh fruit and vegetables causes decay and losses after harvest and may lead to foodborne illness in case of contamination with human pathogens on raw consumed produces. Washing with tap water only marginally reduces microorganisms attached to produce surfaces. Chlorine is widely used for decontamination on fresh horticultural produces. However, due to harmful by-products and the questionable efficacy it has become increasingly challenged. During the last 20 years, the interest to study ClO2 treatments as an alternative sanitation agent for industrially prepared fresh produce has largely increased. For a wide range of commodities, the application of gaseous ClO2 has meanwhile been investigated. In addition, since several years, the interest in aqueous ClO2 treatments has further risen because of the better manageability in postharvest processing lines compared to gaseous application. This article critically evaluated the effects of postharvest application of aqueous ClO2, either alone or in combination with other treatments, on microbial loads for various horticultural produces. In laboratory investigations, application of aqueous ClO2 at concentrations between 3 and 100 ppm effectively reduced counts of natural or inoculated microorganisms (bacteria, yeasts, and mold) in the range of 1 and 5 log. However, various effects of ClO2 treatments on produce quality have been described. These mainly comprise implication on sensory and visual attributes. In this context, there is increasing focus on the potential impacts of aqueous ClO2 on relevant nutritional components of produces such as organic acids or phenolic substances.

Funding

The authors thank the AiF (German Federation of Industrial Research Associations, research project CLEAN, reference number: KF2050820MD2) for financial support of this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.