1,599
Views
29
CrossRef citations to date
0
Altmetric
Reviews

Factors affecting the capsaicinoid profile of hot peppers and biological activity of their non-pungent analogs (Capsinoids) present in sweet peppers

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 649-665 | Published online: 26 Mar 2020
 

Abstract

Capsaicinoids are acid amides of C9–C11 branched-chain fatty acids and vanillylamine and constitute important chemical compounds of Capsicum annuum together with their non-pungent analogs (capsinoids) which have an impressive list of health benefit properties (i.e., analgesia, anti-obesity, thermogenic, cardiovascular, gastrointestinal, antioxidant, anti-bacterial, anti-virulence, anti-inflamatory, anti-diabetic, inhibits angiogenesis, and improves glucose metabolism) . In this review, the state of art on how capsaicinoids are affected by different pre- and postharvest factors is discussed together with their biological activity. For instance, high light intensity and heat treatments may reduce capsaicinoid content in fruits probably due to the loss of activity of capsaicin synthase (CS) and phenylalanine ammonia lyase (PAL). The pungency in peppers varies also with environment, genotype or cultivar, node position, fruiting and maturity stages, nitrogen and potassium contents. As the fruit mature, capsaicinoid levels increase. Fruits from the second node tend to have higher accumulation of pungency than those of other positions and the pungency decreases linearly as the node position increase. Sodium hydroxide treatment reduces the pungency of pepper fruit as it hydrolyzes and modifies one of the features (vanillyl group, the acid-amide linkage and alkyl side chain) of capsaicin molecule. Salt and water stress increase PAL and capsaicin synthase activity and increase the capsaicinoid accumulation in fruit, by negatively regulating peroxidase activity at appropriate levels. Future research must be directed in better understanding the changes of capsinoids during pre and post-harvest management, the causal drivers of the loss of activity of the aminotransferase gene (pAMT) and if possible, studies with genetically modified sweet peppers with functional pAMT. Available data provided in this review can be used in different agricultural programs related to developing new cultivars with specific pungency levels. The contents of capsaicinoids and capsinoids in both fresh fruits and marketed products are also of remarkable importance considering the preferences of certain niches in market where higher added-value products might be commercialized.

Acknowledgements

Virgílio Uarrota thanks the Conicyt-Fondecyt Postdoctoral project 3190055 and Vicerrectoria de Investigacion y Estudios Avanzados (VRIEA-PUCV 2018, project 37.0/2018, Chile) in his postdoctoral research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

Fondo de Fomento al Desarrollo Científico y Tecnológico.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.