1,225
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Physicochemical properties of fucoidan and its applications as building blocks of nutraceutical delivery systems

, ORCID Icon &
Pages 8935-8953 | Published online: 16 Jun 2021
 

Abstract

Many bioactive ingredients with health effects such as antioxidant, anti-inflammatory and neuroprotective possess low bioavailability due to poor solubility and sensitivity. Fucoidan is an ideal material for encapsulating bioactive ingredients because of its unique physicochemical and biological properties, which can improve the function and application of bioactive ingredients. Nevertheless, there is still a lack of review about the physicochemical properties as well as functionalities of fucoidan and the application of fucoidan-based delivery systems in functional food. Hence, in this review, recent advances on the structure, chemical modification, physicochemical properties and biological activity of fucoidan are summarized. This review systematacially describes the recent update on the fucoidan as a wall material for delivering nutraceuticals with a broad discussion on various types of delivery systems ranging from nanoparticles, nanoparticle/bead complexes, emulsions, edible films, nanocapsules and hydrogels. Futhermore, the technical scientific issues of the application of fucoidan in the field of food are emphasized. On the basis of more comprehensive and deeper understandings, the review ends with a concluding remark on future directions of fucoidan-based delivery systems for purposes. Novel fucoidan-based delivery systems such as aerogels, Pickering emulsions, emulsion-filled-hydrogels, liposomes-in-fucoidan, co-delivery systems of bioactive igredients can be designed.

Disclosure statement

No potential conflict of interest was reported by the authors.

Author contribution

X. Zhang collected literature and drafted the manuscript. Z. Wei conceptualized the idea, drafted the outline, gave a guide to professional knowledge, edited and revised the article. C. Xue revised the article. All authors read and approved the final version of the manuscript.

Additional information

Funding

This work was supported by the startup fund from Ocean University of China (grant No. 862001013134). This work was also funded by the National Key R&D Program of China (grant No. 2018YFC0311201).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.