2,215
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Modifying the plant proteins techno-functionalities by novel physical processing technologies: a review

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 4070-4091 | Published online: 09 Nov 2021
 

Abstract

Plant proteins have recently gained market demand and momentum due to their environmentally friendly origins and health advantages over their animal-derived counterparts. However, their lower techno-functionalities, digestibility, bioactivities, and anti-nutritional compounds have limited their application in foods. Increased demand for physically modified proteins with better techno-functionalities resulted in the application of different thermal and non-thermal treatments to modify plant proteins. Novel physical processing technologies (NPPT) considered ‘emerging high-potential treatments for tomorrow’ are required to alter protein functionality, enhance bioactive peptide formations, reduce anti-nutritional, reduce loss of nutrients, prevention of damage to heat liable proteins and clean label. NPPT can be promising substitutes for the lower energy-efficient and aggressive thermal treatments in plant protein modification. These facts captivated the interest of the scientific community in designing novel functional food systems. However, these improvements are not verifiable for all the plant proteins and depend immensely on the protein type and concentration, other environmental parameters (pH, ionic strength, temperature, and co-solutes), and NPPT conditions. This review addresses the most promising approaches of NPPT for the modification of techno-functionalities of plant proteins. New insights elaborating the effect of NPPTs on proteins’ structural and functional behavior in relation to other food components are discussed. The combined application of NPPTs in the field of plant-based bioactive functionalities is also explored.

Graphical Abstract

Disclosure statement

The authors declare no conflicts of interest.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.