456
Views
2
CrossRef citations to date
0
Altmetric
Review

Recent insights into oxidative metabolism of quercetin: catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 1312-1339 | Published online: 29 Aug 2022
 

ABSTRACT

Quercetin is the most abundant polyphenolic flavonoid (flavonol subclass) in vegetal foods and medicinal plants. This dietary chemopreventive agent has drawn significant interest for its multiple beneficial health effects (“polypharmacology”) largely associated with the well-documented antioxidant properties. However, controversies exist in the literature due to its dual anti-/pro-oxidant character, poor stability/bioavailability but multifaceted bioactivities, leaving much confusion as to its exact roles in vivo. Increasing evidence indicates that a prior oxidation of quercetin to generate an array of chemical diverse products with redox-active/electrophilic moieties is emerging as a new linkage to its versatile actions. The present review aims to provide a comprehensive overview of the oxidative conversion of quercetin by systematically analyzing the current quercetin-related knowledge, with a particular focus on the complete spectrum of metabolite products, the enzymes involved in the catabolism and the underlying molecular mechanisms. Herein we review and compare the oxidation pathways, protein structures and catalytic patterns of the related metalloenzymes (phenol oxidases, heme enzymes and specially quercetinases), aiming for a deeper mechanistic understanding of the unusual biotransformation behaviors of quercetin and its seemingly controversial biological functions.

Disclosure statement

The authors declare no conflict of interest.

Funding

This work was supported by Natural Science Foundation of Hunan Province (2021JJ30443), China Inspection and Certification Corporation R&D Project (2021ZJYF013) and the Open Fund for the Large-scale Instruments and Equipments of Hunan Normal University (21CSY165, 22CSY037).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.