615
Views
12
CrossRef citations to date
0
Altmetric
Review Articles

Conventional genetic manipulation of desulfurizing bacteria and prospects of using CRISPR-Cas systems for enhanced desulfurization activity

, , &
Pages 300-320 | Received 24 Dec 2019, Accepted 15 May 2020, Published online: 12 Jun 2020
 

Abstract

Highly active and stable biocatalysts are the prerequisite for industrial scale application of the biodesulfurization process. Scientists are making efforts for increasing the desulfurizing activity of native strains by employing various genetic engineering approaches. Nevertheless, the achieved desulfurization rate is lower than the industrial requirements. Thus, there is a dire need to use efficient genetic tools for precise genome editing of desulfurizing bacteria for enhanced efficiency. In comparison to the previously used genetic engineering tools the newly developed CRISPR-Cas is a more efficient and simple genetic tool that has been successfully applied for targeted genome modification of eukaryotes as well as prokaryotes. In this paper, we have reviewed the approaches, previously used to enhance the biodesulfurization rates of the sulfur metabolizing microorganisms and have discussed the potential of CRISPR-Cas systems in engineering desulfurizing biocatalysts. We have also proposed a model to construct competent desulfurizing recombinants involving use of CRISPR-Cas technology. The model can be used to over-express the dsz genes under a constitutive promoter in a suitable heterologous host, to get a steady expression of desulfurization pathway. This may serve as an inducement to develop better performing desulfurizing recombinant strains using CRISPR-Cas systems, which can be helpful in increasing the rate of biodesulfurization in future.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by International Foundation for Science (IFS), Sweden under their research grants No. F/5379-1 & F-5379-2 and Higher Education Commission (HEC) of Pakistan under research grant No. 3884.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 783.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.