280
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Fractal Germanium Patterns: Annealing Strategies and Perspectives of Metal-Induced Crystallization

, , , , , , & show all
Pages 368-390 | Published online: 16 May 2014
 

Abstract

Semiconductor germanium (Ge) in contact with some metals, such as Al, Pd, and Au, etc., is a class of distinctive materials with non-integer dimensions (D) that differ from integer dimensional materials, such as nanoparticles (0D), nanowires/nanorods//nanotubes/nanoribbons (1D), and thin films (2D). In this article, we describe our efforts toward understanding the annealing strategies and perspectives of metal-induced crystallization for the amorphous Ge embedded in Al, Pd, and Au matrices prepared by high vacuum thermal evaporation techniques, highlighting contributions from our laboratory. First, we present the Al-induced crystallization of amorphous Ge and formation processes of fractal Ge patterns. In addition, the fractal Ge patterns induced by Pd nanoparticles with solid-state reactions will be summarized in detail. Temperature-dependent properties of resistance and fractal dimension in Pd/Ge bilayer films will be expounded. In particular, the nonlinear optical properties are discussed in detail. Finally, we will emphasize the in situ observations by transmission electron microscopy and multi-fractal analysis for the fractal Ge patterns induced by Au nanoparticles. Moreover, the polycondensation-type fractal Ge patterns with non-integer dimensions, thick branches and smooth edges, and metastable gamma-Au0.6Ge0.4 are further investigated. The computer simulation indicated that the experimental results are good agreement with the simulation patterns, which were carried out by a ripening mechanism of non uniform grains. This review may provide a novel insight to modulate their competent performance and promote rational design of micro/nanodevices.

FUNDING

The work described in this article was financially supported by the National Natural Science Foundation of China (Project Numbers: 11074161, 11025526 and 41073073), Shanghai Pujiang Program (Project Number: 10PJ1404100), Key Innovation Fund of Shanghai Municipal Education Commission (Project Number: 10ZZ64), Science and Technology Commission of Shanghai Municipality (Project Numbers: 10JC1405400, 09530501200), and Shanghai Leading Academic Discipline Project (Project Number: S30109). This work was also supported by a grant from City University of Hong Kong (Grant Number: 9667074).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 526.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.