410
Views
54
CrossRef citations to date
0
Altmetric
Reviews

Highly Efficient pc-LED Phosphors Sr1-xBaxSi2O2N2:Eu2+ (0 x 1) - Crystal Structures and Luminescence Properties Revisited

, , &
Pages 215-229 | Received 04 Jul 2013, Accepted 04 Nov 2013, Published online: 28 Mar 2014
 

Abstract

Due to their excellent luminescence properties in the blue-green to green-yellow spectral region, oxonitridosilicates Sr1-xBaxSi2O2N2:Eu2+ (0 x 1) are promising conversion materials for application in phosphor-converted high-power LED devices. In order to understand the properties and thus to fully exploit the potential of these materials, detailed knowledge of corresponding (local) crystal structures is indispensable. Detailed insights into real structures have been achieved by combining X-ray diffraction and electron-microscopy methods. A major reason for the excellent luminescence properties of the phases Sr1-xBaxSi2O2N2:Eu2+ (0 x 1) is the rigid silicate substructure built up of two-dimensionally condensed SiON3 tetrahedra. The general topology of these layers is analogous for all members. However, there is no complete solid-solution series. Crystal-structure determination was frequently not straightforward because several real-structure effects had to be considered. The relative orientation of the silicate layers and the metal-atom layers inserted between them can differ without changing the chemical composition. As a consequence, polytypes are formed. The differentiation between such closely related structures was only possible by a thorough analysis of crystallographic data. The same applies for phases which differ in their composition as all Sr1-xBaxSi2O2N2:Eu2+ (0 x 1) phases are very similar. The literature on these compounds is critically discussed with respect to phase analysis and structure determination. Different synthesis routes are reviewed and the results of luminescence investigations are discussed in this contribution. Beyond thermal as well as chemical stability and high transparency, electron-phonon coupling is effectively suppressed in Sr1-xBaxSi2O2N2:Eu2+ (0 x 1) phases. Therefore, primary UV to blue light (GaN based semiconductor LEDs) is efficiently converted into visible components of the spectrum. Sr1-xBaxSi2O2N2:Eu2+ (0 x 1) phases are therefore promising oxonitridosilicate phosphors for application in LED industry.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 526.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.