1,438
Views
35
CrossRef citations to date
0
Altmetric
Reviews

Stationary shoulder friction stir welding – low heat input joining technique: a review in comparison with conventional FSW and bobbin tool FSW

, ORCID Icon & ORCID Icon
Pages 865-914 | Published online: 05 Jul 2021
 

Abstract

Invention of friction stir welding (FSW) is revolutionarily redefined solid-state materials joining process for lightweight constructions. With numerous commercial applications, FSW has been classified as a matured joining process with some key issues, such as high shoulder heat input on top surface, high process downforce, weld thinning, and relatively poor surface asperity. Stationary shoulder friction stir welding (SSFSW) is one of the most important variants derived from the conventional FSW (CFSW) possessing almost uniform and balanced heat input through the thickness of plates to be welded. Thus, the SSFSW eliminates or suppresses the above key issues of the CFSW process with improved microstructural and mechanical properties. Numerous reviews are available summarizing the development of CFSW, while not such on SSFSW. With the advancement of SSFSW in recent years, sufficient literature of SSFSW deserves a review to help researchers from both academia and industry gaining process aspects and unexplored areas. The present paper summarizes the research progress on SSFSW critically reviewing microstructural evolution, mechanical properties, and derivatives to cope with particular problems. Moreover, this review provides a detailed comparison of CFSW, SSFSW, and bobbin tool friction stir welding (BTFSW) on different aspects, such as process principle, tooling system, heat generation, joint features, and joint performance. To put more emphasize on commercialization of SSFSW, the different variants of SSFSW along with their industrial applications are also presented. Finally, the process challenges and future scopes of SSFSW are proposed.

Disclosure statement

The authors hereby declare that there is no known conflict of interest that could have appeared to influence the work reported in this paper.

Additional information

Funding

The authors gratefully acknowledge the financial support of the State Key Laboratory of Solidification Processing (NPU, China) [2019-QZ-01] and the Postdoctoral Science Foundation China [2019M663815].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 526.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.