360
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

A revisit to solution-processed zirconia and its stabilized derivatives as protective coatings for base-stainless steel

, , & ORCID Icon
Pages 668-702 | Published online: 19 Jul 2022
 

Abstract

Stainless steel (SS) is a well-known engineering material which is predominantly used in multitudinous applications; however, the disquieting entity is its deteriorative nature triggered by the corrosion in biological, chemical, and high-temperature surroundings. Zirconia is a noteworthy material because of its remarkable mechanical, thermal, and biocompatible properties. To further improve the properties, the high-temperature phases of zirconia are stabilized at room temperature. Zirconia and its stabilized derivates are favored candidates as protective coatings for SS. They offer high resistance, allow them to perform in corrosive, sensitive environments, and augment the longevity, serviceability of SS. Deposition of zirconia/stabilized-zirconia (Z/s-Z) coatings is accomplished using vapor-phase methods, which are capital-intensive; they comprise high vacuum and processing time, confined space, and more energy consumption, resulting in fabrication cost maximization. Alternatively, solution-phase deposition methods are advantageous, effortless, and capable of depositing on large-area substrates, promising to lessen fabrication costs and to enhance yield. Solution-phase methods, namely dip, spray, and spin coatings, have been investigated to produce effective, high-grade Z/s-Z coatings on SS. This review summarizes the utilized precursors, solvents, and process parameters for depositing Z/s-Z coatings on different types and grades of steel through mentioned solution-phase methods, respectively. The review emphasizes the researched potential applications of solution-phase processed Z/s-Z with a particular role as a protective coating on SS-based implants, surgical instruments preserving corrosion resistance, nontoxicity and biocompatibility in the body fluids. The review also highlights the defensive property of solution-phase processed Z/s-Z coatings to the underneath SS against corrosive chemical media (acids like H2SO4, HCl, HNO3; chlorides like NaCl and toxic gases like H2S, coal). The oxidation protection to the beneath SS by the mentioned coatings in aggressive high-temperature surroundings is also focused in the present review.

Acknowledgments

The authors would like to thank Department of Metallurgical and Materials Engineering, NITK Surathkal, India.

Conflict of interest statement

The authors declare no conflict of interest.

Additional information

Funding

This work is supported by Science and Engineering Research Board (SERB), Department of Science and Technology (ECR/2015/000339).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 526.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.