Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 170, 2015 - Issue 9
51
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Free electron gas spectrum parameters of noble gases in dc electric field

&
Pages 719-728 | Received 06 Apr 2015, Accepted 29 Aug 2015, Published online: 15 Oct 2015
 

Abstract

Free electron gas is present in every gas, whether it is of atomic or molecular structure. Since the Maxwell spectrum type is the consequence of only thermal motion of constitutive gas particles; therefore, the presence of electric field leads to change the spectrum of charged particles due to their directed motion. However, it has been shown that in the case of occurrence only of elastic interactions between electrons and neutral gas particles (a condition that has been met in the case of weakly ionized noble gases of a relatively huge volume) the deviation of the gas spectrum of free electrons in the electric field from the Maxwell type is negligible. In such a case, the gas spectrum of free electrons is either of Maxwell type (if the frequency collision value is energy-independent) or of Druyvesteyn type (if the mean free electron path value is energy-independent). The Maxwell and Druyvesteyn distribution types are very similar. The only noticeable difference is that the tail of the Maxwell distribution decreases with the energy exponent to the first degree of energy, and the tail of Druyvesteyn distribution with the energy exponent to the second degree of energy. The aim of this paper is to determine whether the gas spectrum of free electrons in weakly ionized noble gases at small values of the product pd (pressure and inter-electrode distance) follows either the Maxwell's or Druyvesteyn's type, as well as to determine the dependence of spectrum parameters on the product pd. It has been established that better results are obtained on the assumption that the mean value of collision frequency is energy-independent.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The Ministry of Education, Science and Technological Development of the Republic of Serbia supported this work under contract 171007.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,076.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.