177
Views
1
CrossRef citations to date
0
Altmetric
Regular Articles

Evaluating direct and indirect effects of low-energy electrons using Geant4-DNA

, &
Pages 1042-1051 | Received 11 Jan 2020, Accepted 13 Jul 2020, Published online: 12 Aug 2020
 

Abstract

Monte Carlo simulations can classify DNA damage into different types and predict the amount of energy deposited. Geant4-DNA was used to predict simple and complex DNA damage induced by irradiation of low-energy electrons at 0.1–50 keV. The number of molecules generated at different energy levels of radiation was analyzed after observing the gradual changes in the level of water radiolysis. A DNA model was used to categorize direct damage according to the location of strand breaks at the atomic level. The parameters of energy threshold (minimum amount of energy needed to break DNA strands) and 10 base pairs (maximum distance that separates two strand breaks) were set. All instances of water radiolysis including the main OH radical occurred most frequently at 1 keV followed by at 1.5 and 0.5 keV. Direct strand breaks most commonly occurred at 0.5 keV followed by at 0.3 keV. Finally, most of strand breaks occurred more frequently at 0.5 keV than at 0.3 keV. The computational measurement results for indirect and direct effects of irradiation depend on the type of simulation code and the DNA model used. Values used in Geant4 (physics list, chemical interaction time and energy threshold) may also influence the results.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,076.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.