84
Views
17
CrossRef citations to date
0
Altmetric
Original

Cloning and expression pattern of SsHKT1 encoding a putative cation transporter from halophyte Suaeda salsa

Full Length Research Paper

, , &
Pages 106-114 | Published online: 11 Jul 2009
 

Abstract

Potassium is an essential element for plant, and high-affinity K+ uptake system plays a crucial role in potassium absorption and transportation. Here we report the isolation and characterization of a HKT1 homolog from C3 halophyte Suaeda salsa (L.) (SsHKT1), particularly under low K+ treatment. The SsHKT1 cDNA was 2033 nucleotides long including 1650 bp ORF for a 550 amino acids peptide and a predicted molecular mass of 63.0 kDa. The deduced amino acid sequence of SsHKT1 was 39–64% identical to other plant HKT-like sequences. A SsHKT1-specific antibody was prepared and reacted with a 63.0 kDa protein from S. salsa plasma membrane. Reverse transcriptase-PCR analysis showed that SsHKT1 was mainly expressed in leaf tissues and to a lesser extent, in root tissues. Amounts of SsHKT1 transcript were developmentally controlled and significantly up-regulated by K+ deprivation and NaCl treatment. The results suggested that SsHKT1 might play an important role in ion homeostasis and salt tolerance of S. salsa.

Acknowledgements

We are grateful for financial support by the NSFC (National Natural Science Research Foundation of China, project No: 30670177), Natural Science Research Foundation of Shandong Province (Z2004D03).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 6,822.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.