138
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced thermal degradation of 2,2′-dichlorodiethyl sulfide (sulfur mustard, HD) with the presence of metal oxides

, &
Pages 1137-1141 | Received 22 Dec 2015, Accepted 20 Jan 2016, Published online: 23 Jun 2016
 

GRAPHICAL ABSTRACT

ABSTRACT

Thermal degradation of sulfur mustard (2,2′-dichlorodiethyl sulfide, HD) in the presence of metal oxide adsorbents was investigated by thermal desorption in conjunction with gas chromatography–mass spectrometry (GC-MS). Zr(OH)4, Al2O3, Al2CoO4, MgO, CeO2, and V2O5 were used as metal oxide adsorbents. Neat HD was spiked onto the metal oxides packed in glass tubes, which were kept at room temperature and then heated at moderately elevated temperatures of 100°C by a thermal desorption system. The products of thermal degradation were directly transferred and analyzed by GC-MS. 1,4-Dithiane and 1,4-oxathiane were characterized as the major products of the thermal degradation of HD in the presence of Zr(OH)4, Al2O3, Al2CoO4, and CeO2 adsorbents. No effective degradation was observed with MgO and V2O5. Of particular note is Zr(OH)4, which extremely enhanced the thermal degradation of HD.

Acknowledgments

We thank Dr. Yonghan Lee, Senior Researcher at the Agency for Defense Development, for assistance with identification of decomposed products of HD observed in this study, and Chemical Analysis Test and Research Lab for the synthesis of HD.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,235.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.