742
Views
72
CrossRef citations to date
0
Altmetric
Original Articles

Wire Electrochemical Discharge Machining of Al2O3 Particle Reinforced Aluminum Alloy 6061

, &
Pages 446-453 | Received 27 Jan 2008, Accepted 04 Jul 2008, Published online: 26 Feb 2009
 

Abstract

The behavior of wire electrochemical discharge machining of Al2O3 particle-reinforced aluminum alloy 6061 was studied. The effects of machining voltage, current, pulse duration, and electrolyte concentration, on material removal rate (MRR) were evaluated in the light of the contribution of the electrical discharge machining (EDM) and electrochemical machining (ECM) actions. The relative strength of the EDM and ECM activities in the machining process under different conditions was studied with the aid of the voltage waveforms. It was found that the conditions of high current or high concentrations of electrolyte would promote the ECM activity and result in a high MRR. The relative importance of the various cutting parameters on MRR was established using orthogonal analysis. The results suggest that to achieve the highest MRR, the applied current is the most influential factor among current, pulse duration and electrolyte concentration. This outcome is supported by experimental results and is explained in terms of the surface area of the matrix phase and the spark gap size.

ACKNOWLEDGMENT

This research was fully funded by the Research Committee of the Hong Kong Polytechnic University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.