1,785
Views
65
CrossRef citations to date
0
Altmetric
Original Articles

Review: Thermal Debinding Process in Particulate Materials Processing

, , &
Pages 103-118 | Received 29 Dec 2010, Accepted 01 Feb 2011, Published online: 31 Jan 2012
 

Abstract

Developing a rapid and efficient method for removing polymers (termed binders) from a shaped powder component, know as a green body, is important to forming defect-free metal, ceramic, and cermet structures. The rapid growth in powder injection molding to form complex shapes at high precision in large quantities has increased the need for faster, cleaner, and cheaper polymer removal processes. Binder removal using controlled heating of the component in gaseous atmosphere is the most popular method. This thermal debinding or burnout process is a delicate process, since it is easy to crack, blister, slump, or otherwise damage the component with an improperly designed cycle. To avoid these issues, often long heating cycles are used to remove the binder, but with a loss of productivity. Considerable progress has been made over the past several decades in understanding various phenomena during polymer burnout, resulting in substantial reduction in the thermal debinding time. This article provides an overview of the research carried out on thermal debinding process (primarily from powder injection molded samples) with major emphasis on progress reported over the last fifteen years. This review article proposes a model to predict the formation of defects during all stages of thermal debinding and suggests future research direction in the field.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.