201
Views
16
CrossRef citations to date
0
Altmetric
NANOMATERIALS ARTICLES

Development of Nanostructured Armco-Fe by Equal Channel Angular Extrusion (ECAE)

, , , , &
Pages 1276-1284 | Received 27 Jun 2011, Accepted 24 Sep 2011, Published online: 26 Nov 2012
 

Abstract

The Equal Channel Angular Extrusion or Pressing (ECAE/ECAP) process has been developed over these last years in order to obtain nanostructured materials by means of severe plastic deformation. These applications have been mainly focused on light alloys while its application to iron and steel has not been so common. This is due to the difficulties that their ECAE processing implies, as much higher values for the processing force are required. In this present study, the results achieved when Armco-Fe is processed by ECAE at room temperature are shown. In addition, a comparative study on the variation in the mechanical properties (yield stress, ultimate tensile strength, and elongation at break) is shown when different thermal treatments are employed. Specific combinations are also shown of the thermal treatments which lead to a higher value of elongation and mechanical strength in relation to the starting material. Furthermore, an analysis of the obtained results is made by optical and scanning electron microscopy techniques.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.