146
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Zone Refining of Tin: Optimization of Zone Length by a Genetic Algorithm

, , , &
Pages 746-752 | Received 01 Jun 2012, Accepted 17 Sep 2012, Published online: 08 Jul 2013
 

Abstract

Zone refining comprises a number of techniques utilized to deal with the rearrangement of soluble impurities or phases along a bar in order to produce high-purity materials. The concentration curves can be predicted for given values of segregation partition coefficient (k), molten zone length, and a number of sequential zone passes. The combination of such process parameters can result in many possible experimental conditions, and the optimization by trial-and-error methods is not suitable, even by numerical simulation due to computational time consumption. The purpose of this work is to evolve an interaction between a genetic algorithm (GA) and a predictive model for impurity distribution, permitting the best zone length in each pass to be determined in order to provide maximum purification, minimum bar length waste and the lowest number of zone passes. The proposed approach is validated against experimental results of zone refining of tin, for impurities having opposite segregation behaviour, i.e., k > 1 and k < 1.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.