292
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Designing Cu-Zr Glass Using Multiobjective Genetic Algorithm and Evolutionary Neural Network Metamodels–Based Classical Molecular Dynamics Simulation

, , &
Pages 733-740 | Received 27 Aug 2012, Accepted 03 Dec 2012, Published online: 08 Jul 2013
 

Abstract

Shear deformation analysis and diffusion behavior of Copper-Zirconium Bulk Metallic Glasses (BMG) is studied for different combinations of processing parameters. Melt holding temperature, melt holding duration, cooling rate of melt and composition of BMG are varied to obtain BMGs of different structures. The as-quenched structures are characterized using Radial Distribution Function (RDF) and Self-Diffusion constant values (of each atom type). The objective of this study is to design a Cu-Zr BMG which can absorb maximum energy and still deform as little as possible while maximizing its diffusivity during shear deformation of the structure. For this, metamodels were constructed by feeding the Molecular Dynamics (MD) results to an Evolutionary Neural Network (EvoNN) so as to generate the desired objective functions which are then optimized through multiobjective genetic algorithm. This led to identification of some hitherto unknown structures, characterized by atomic coordinates, which have good resistance to shear deformation and at the same time possess high diffusivity.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.