1,039
Views
67
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Processing Temperatures on Mechanical Properties and Microstructure of Squeeze Cast Aluminum Alloy Composites

, &
Pages 367-373 | Received 17 Jun 2014, Accepted 10 Sep 2014, Published online: 06 Jan 2015
 

Abstract

The paper deals with the influence of melt and die temperatures on the squeeze cast silicon carbide particulate reinforced aluminum alloy composites. Samples were produced at the following constant melt and die temperatures: melt—750, 800, 850, and 900°C; die—250, 300, 350, and 400°C. During the specimen fabrication, pressure was maintained at 100 MPa. The results reveal significant influence of both melt and die temperatures on the mechanical properties. The optimum melt and die temperatures for the preparation of the composite are 850°C and 350 °C, respectively. Tensile and impact strengths, and hardness of composite samples prepared at this temperature combination are found to be better than those of samples prepared at other temperatures. Additionally, microstructures of samples prepared at this temperature combination display a relatively fine grain structure and the smallest degree of particle agglomeration which explain the dependence of mechanical properties on the melt and die temperatures.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.