417
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Microstructural and Mechanical Observations of Galvanized TRIP Steel after Friction Stir Spot Welding

, , , , &
Pages 1090-1103 | Received 19 Sep 2014, Accepted 01 Dec 2014, Published online: 29 Apr 2015
 

Abstract

Friction stir spot welding was done in transformation-induced plasticity steel sheets coated with zinc. The influence of tool rotational speed and dwell time on the microstructure and mechanical properties of lap-joints were investigated. After processing, different zones were formed in the joints. Microstructures in each zone depended on the welding conditions employed. Higher dwell time coupled with higher rotational speed promoted the deposition of a large amount of allotriomorphic ferrite beside the keyhole left by the pin. Coalesced bainite formation was stimulated by the deformation. Mechanical and chemical stabilization of the austenite occurred in different welding zones. Some zinc from the coating remained in the joint, in the stirring zone, representing a partial bonding between the steel sheets. The strength of the welds depended on a complex interaction between geometrical features, such as bonding ligament length and distance between the zinc and the keyhole left by the pin and the resultant microstructure in the stirring zone. The highest joint strength was observed for the “lowest tool rotational speed–highest dwell time” combination of welding parameters.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.