613
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

An Experimental Investigation on Ultrasonic Vibration-Assisted Grinding of SiO2f/SiO2 Composites

, , , &
Pages 887-895 | Received 23 Jan 2015, Accepted 26 Aug 2015, Published online: 17 Dec 2015
 

Abstract

Fiber-reinforced ceramic matrix composite (FRCMC) have been widely used in aerospace and other high-technology fields due to their excellent mechanical and physical properties. However, FRCMC is a kind of typical material with anisotropic and inhomogeneous structure; thus, it is difficult to guarantee the precision and surface quality using traditional machining. The present paper employed ultrasonic vibration-assisted grinding (UAG) to machine 2.5D woven SiO2f/SiO2 composites. By comparing the grinding force, surface microstructure, chip formation, surface topography and surface roughness with and without ultrasonic vibration for the machining of SiO2f/SiO2 composites, the feasibility of UAG on FRCMC was investigated experimentally. In addition, the effects of the process parameters (including spindle speed, feed rate, grinding depth, grain mesh size and ultrasonic power) on grinding force and surface roughness were studied through an orthogonal experiment. The research obtained can be a useful technical support for the development of UAG in the machining of FRCMC.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.