214
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Effect of laser glazing on the thermo-mechanical properties of plasma-sprayed LaTi2Al9O19 thermal barrier coatings

, , , , &
Pages 1573-1580 | Received 06 Jun 2016, Accepted 14 Sep 2016, Published online: 05 Dec 2016
 

ABSTRACT

Conventional duplex (DL) and functionally graded (FG) LaTi2Al9O19 (LTA) coatings were deposited over C263 nickel alloy by air plasma spray (APS) and compared with subsequent laser glazing processes. The effect of laser glazing on adhesion strength and thermal barrier performance was investigated. The thermal barrier effect was measured using the temperature difference technique involving infrared (IR) rapid heater and the adhesion strength was measured using the scratch tester. The surface morphology and microstructure were analyzed by optical microscopy (OM), Scanning Electron Microscope (SEM) and 3D profilometer. Based on the experimental results, the laser glazing showed a remarkable temperature drop after IR rapid heating. The changes in porosity and grain refinement make more contributions to the temperature drop of the laser-glazed coatings than that of as-sprayed coatings. The temperature drop is about 110°C for laser-glazed LTA FG coating after 100 s of IR flash, while the drop in DL as-sprayed coating is 60°C compared to the base material.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.