407
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Constrained multi-objective optimization of EDM process parameters using kriging model and particle swarm algorithm

Pages 397-404 | Received 17 Nov 2016, Accepted 26 Jan 2017, Published online: 09 Mar 2017
 

ABSTRACT

This paper investigates the highly nonlinear relationship between process parameters and machining responses, including material removal rate (MRR), surface roughness (SR), and electrode wear rate (EWR) of electric discharge machining (EDM) using Kriging model. Subsequently, an emerging multi-objective optimization algorithm called particle swarm is used to determine the best machining conditions that not only maximize the machining speed but also minimize the EWR with a constraint of the SR. The experiment was carried out with P20 steel on a CNC EDM machine using copper electrode. The research result shows that the MRR increases sharply when increasing the discharge current just like other researches pointed out. However, the relationship between EWR and current is complicated. EWR appears the minimum value when the current is around 30 A. The speed of change of MRR per unit of EWR is the highest when the SR is around 14.5 µm. The combination of Kriging regression model and particle swarm optimization is considered as an intelligent process modeling and optimization of EDM machining. The proper selection of process parameters helps the EDM operator to reduce the machining time and cost.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.