176
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Rough-Fuzzy-GA-based design of Al alloys having superior cryogenic performance

, ORCID Icon &
Pages 1075-1081 | Received 10 Oct 2016, Accepted 17 Feb 2017, Published online: 11 Apr 2017
 

ABSTRACT

Multi-objective genetic algorithm (GA) is employed for the optimal design of novel heat-treatable aluminum alloys with superior performance at cryogenic temperatures. Existing database on age-hardenable aluminum alloys is utilized to create a learning model. Composition and processing parameters of the alloys are considered as the inputs, whereas mechanical properties, viz. YS (Yield Strength), UTS (Ultimate Tensile Strength) and %Elongation tested at subzero temperatures, are used as the outputs, which characterize the performance of the alloy. Data-driven models are developed using the hybrid rough-fuzzy approach. While rough set brings out the most significant variables and formulates if-then rules to explain the relationships between inputs and outputs, fuzzy inference system (FIS) serves as the predictive model. Strength and ductility of the Al alloys at low temperature being conflicting in nature are simultaneously optimized using multi-objective GA to design alloys having an optimal blend of the two properties.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.