695
Views
55
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of A-TIG process parameters using response surface methodology

, &
Pages 709-717 | Received 23 Nov 2016, Accepted 24 Feb 2017, Published online: 11 Apr 2017
 

ABSTRACT

In the present work, the influence of process parameters such as welding current (I), welding speed (S), and flux coating density (F) on different aspects of weld bead geometry for example depth of penetration (DOP), bead width (BW), depth to width ratio (D/W), and weld fusion zone area (WA) were investigated by using the central composite design (CCD). 9–12% Cr ferritic stainless steel (FSS) plates were welded using A-TIG welding. It was observed that all input variables have a direct influence on the DOP, BW, and D/W. However, flux coating density has no significant effect on WA. Mathematical models were generated from the obtained responses to predict the weld bead geometry. An optimized DOP, BW, D/W, and WA of 6.95 mm, 8.76 mm, 0.80, and 41.99 mm2, respectively, were predicted at the welding current of 213.78 A, the welding speed of 96.22 mm/min, and the flux coating density of 1.99 mg/cm2. Conformity test was done to check the practicability of the developed models. The conformity test results were in good agreement with the predicted values. Arc constriction and reversal in Marangoni convection were considered as major mechanisms for the deep and narrow weld bead during A-TIG welding.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.