351
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of hybrid laser–TIG welding of 316LN stainless steel using genetic algorithm

, , , &
Pages 1094-1100 | Received 21 Nov 2016, Accepted 11 Mar 2017, Published online: 16 May 2017
 

ABSTRACT

Determination of optimum hybrid laser–TIG welding process variables for achieving the maximum depth of penetration (DOP) in type 316LN stainless steel has been carried out using a genetic algorithm (GA). Nd:YAG pulsed laser and the TIG heat source were coupled at the weld pool to carry out hybrid welding. Design of experiments approach was used to generate the experimental design matrix. Bead-on-plate welds were carried out based on the design matrix. The input variables considered were laser power, pulse frequency, pulse duration, and TIG current. The response variable considered was the DOP. Multiple-regression model was developed correlating the process variables with the DOP using the generated data. The regression model was used for evaluating the objective function in GA. GA-based model was developed and it produced a set of solutions. Tournament and roulette wheel selection methods were used during the execution of GA. It was found that both the selection methods identified similar welding process parameters for achieving the maximum DOP. Excellent agreement was observed between the target DOP and the DOP values obtained in the validation experiments during hybrid laser–TIG welding.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.