429
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Process parameters/material location affecting hooking in friction stir lap welding: Dissimilar aluminum alloys

ORCID Icon & ORCID Icon
Pages 323-332 | Received 24 Oct 2016, Accepted 18 Mar 2017, Published online: 16 May 2017
 

ABSTRACT

Influence of spindle and weld speeds, metal location, direction of spindle rotation, and tool pin length on hooking in lap FSW of dissimilar aluminum alloys and the effect of hook on tensile and fatigue weld strength was studied. Optical images of the cross-section of the specimen welded at different process parameters were analyzed. The results indicate that increased spindle speed, reduced weld speed, higher tool pin length, clockwise spindle rotation, and locating the stronger material at the bottom of the joint increased the size of the hooking defect. Higher weld speeds and very high spindle speeds resulted in lower hook size on the advancing side (AS) compared to the retreating side (RS) of the joint. Welding with low weld speed would result in higher advancing side hook size compared to the retreating side. Friction stir weld joints fabricated with anti-clockwise spindle rotation has been found to have extremely low hook both on the AS and the RS of the joint. The tensile and fatigue strengths of the weld joints and plates are degraded by the hook. The fatigue strength of welded alloys could be improved by a double pass weld, the second pass welded immediately adjacent to the first pass.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.