1,005
Views
86
CrossRef citations to date
0
Altmetric
Original Articles

Friction stir processing of Al6061-SiC-graphite hybrid surface composites

, , , &
Pages 795-804 | Received 06 May 2017, Accepted 08 Oct 2017, Published online: 15 Nov 2017
 

ABSTRACT

Friction stir processing (FSP) of Al6061-SiC-Graphite hybrid composites is studied in detail via force analysis, spectroscopic, microstructural and indentation studies. Effect of various tool rotational speeds was assessed, and the axial force variation was monitored. The presence of graphite as a reinforcement influences the axial force fluctuations due to its flaky nature and high thermal conductivity. Variation in microstructure at different tool rotational speed is studied using scanning electron microscope. The tool rotational speed has a significant influence on the area of FSP zone, fragmentation and depth of penetration of particles, dispersion of agglomerates and grain refinement of the matrix material. Spectroscopic characterization of the processed samples was done using Raman analysis and X-Ray diffraction studies. A noticeable change in intensity and shift in the respective Raman peak positions were observed, indicating residual stresses and various disorders in the crystal structure of the reinforced particles. Influence of tool rotational speed and existence of SiC and Graphite particles on the mechanical properties were further evaluated using nano indentation testing. The hybrid composite shows the combination of best and uniform mechanical properties at an optimum set of processing parameters.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.