404
Views
14
CrossRef citations to date
0
Altmetric
Articles

Laser cladding composite coatings by Ni–Cr–Ti–B4C with different process parameters

, , &
Pages 898-906 | Received 09 Nov 2018, Accepted 12 Mar 2019, Published online: 19 Apr 2019
 

ABSTRACT

To investigate the effect of laser process parameters on microstructure and properties of composite coating, the composite coatings were manufactured by laser cladding Ni–Cr–Ti–B4C mixed powder on Q235 mild steel with different process parameters. The coatings are bonded with the substrate by remarkable metallurgical binding without cracks and pores. The composite coatings are consisted of in situ synthesized solid solution Ni–Cr–Fe, intermetallic compound (IMC) Ni3Ti, Cr2Ti, and ceramic reinforcements TiB2, TiC. Results of scanning electron microscopy (SEM) revealed that the ceramic reinforcements became coarser with higher specific energy (Es). There were independent ceramics TiB2, TiC, eutectic ceramic TiB2–TiC in coatings, and eutectic alloy–ceramic was detected. Compared with the substrate, the microhardness of coatings was increased significantly, and the maximum microhardness of coatings was approximately five times as high as the substrate. The wear resistance of coatings was improved dramatically than the substrate. Compared to the coatings with lower Es, higher Es led to lower microhardness and worse wear resistance ascribing to more Fe diffused into the coating from the substrate.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study work was supported by the National Natural Science Foundation of China: [Grant Number 51475232], Young Scientists Fund of the National Natural Science Foundation of China: [Grant Number 51605473], Jiangsu Provincial Research Foundation for Basic Research: [Grant Number BK20161476], and Science and Technology Planning Project of Jiangsu Province of China: [Grant Number BE2015029].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.