208
Views
2
CrossRef citations to date
0
Altmetric
Articles

The sintering densification and microstructure evolutions of Ti-1Al-8V-5Fe alloy with Si additions

, , &
Pages 907-914 | Received 22 Jan 2019, Accepted 26 Mar 2019, Published online: 06 May 2019
 

ABSTRACT

The cost-efficient Ti-1Al-8V-5Fe-xSi (denoted Ti-185-xSi hereafter, x = 0, 0.15, 0.3, 0.45, 0.6, 0.75) alloys are synthesized by cold compaction and sintering powder metallurgy (PM) technology using TiH2 and high-pure FeV80 powders. The sintering densification, microstructural evolutions and mechanical behavior of Ti-185-xSi alloys sintered at 1350°C are investigated. The results show that the Si element is favorable to enhance the sintered density of Ti-185 alloys, which should be limited to ≤0.3%. The amount and average size of precipitate Ti5Si3 increase in the Ti-185 alloys with increasing Si content. Meanwhile, the Rockwell hardness of Ti-185 alloy also displays an increasing tendency, suggesting the Si element can improve the hardness of Ti-185. The Ti-185–0.15Si alloy possesses a better comprehensive mechanical property of strength (937 ± 8 MPa) and elongation (3.5%). The high-performance Ti-185 alloy is successfully prepared using low-cost FeV80 master alloy with slight Si impurity instead of costly V.

Acknowledgments

The authors thank Dr. Xing Guo for some characterization analysis and testing the mechanical properties, Dr. Qiangguo Li for technical help and fructuous discussions. This work was mostly supported by Professor Yungui Chen from Sichuan University in China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.