422
Views
23
CrossRef citations to date
0
Altmetric
Articles

Feasibility study of a flexible grinding method for precision machining of the TiAl-based alloy

, , &
Pages 1160-1168 | Received 05 Feb 2018, Accepted 08 May 2019, Published online: 12 Jun 2019
 

ABSTRACT

This study presents detailed experimental investigations on precision machining of the TiAl-based alloy with an abrasive belt flexible grinding method. Subsequently, the feasibility of this precision machining method is evaluated with respect to the material removal rate, abrasive wear, machined surface roughness, and residual stress. The material removal rate and surface roughness were determined as experimental indicators and were measured via a three-coordinate measuring instrument and surface profiler, respectively. Micro-morphologies of the machined surface and worn abrasive belt were investigated via a scanning electron microscope. The residual stress distributions in the machined surface layer were detected by using an X-ray diffractometer. The experimental results revealed that the aforementioned evaluation indicators satisfied the desired requirements, thereby indicating that the abrasive belt flexible grinding technique was suitable for precision machining of the TiAl-based alloy. Additionally, the optimal combinations of grinding parameters were determined to obtain desirable material removal rate and machined surface roughness. The basic wear processes and characteristics of the abrasive belt were thoroughly examined. The formation of desirable residual compressive stresses in the machined surface layer was mainly attributed to low frequency and small amplitude vibration knocking at the grinding interface.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51605056) and the Research Funds for Basic Science and Advanced Technology of Chongqing (Grant No. cstc2016jcyjA0066).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.