483
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Assessment of process parameters and performance enhancement through a novel suction flushing technology in RµEDM

, ORCID Icon, &
Pages 1476-1488 | Received 25 Mar 2021, Accepted 14 Jun 2021, Published online: 05 Jul 2021
 

ABSTRACT

Reverse micro electro-discharge machining (RµEDM) is a promising and cost-effective technology for fabricating unconventional shaped single and arrayed micro-pins of high aspect ratio. However, dimensional inaccuracies, poor surface finish and long machining time are of great concern. An experiment-based detailed investigation of process parameters for analyzing various machining responses has been performed in this article. Taguchi’s L16 orthogonal array design of experiments has been used to frame out the experimental runs. Discharge voltage, capacitance and feed rate have been considered as process parameters whereas, material removal rate, taper root angle, surface roughness and machining time as responses for the fabrication of a single micro-pin. Additionally, the feasibility of a novel high-pressure suction flushing technology implemented for RµEDM has been demonstrated. The performance of this technology is verified for better surface quality and lesser machining time. It is observed that by using the proposed suction technology, along with the suitable parametric settings, the micromachining time significantly improved (~20%) while fabricating an arrayed micro-pins in elliptical cross-sections profile.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.