230
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Twicing local linear kernel regression smoothers

&
Pages 399-417 | Received 24 Jan 2011, Accepted 25 Oct 2011, Published online: 06 Jan 2012
 

Abstract

It is known that the local cubic smoother (LC) has a faster consistency rate than the popular local linear smoother (LL). However, LC often has a bigger mean squared error (MSE) than LL numerically for samples of finite size. By extending the idea of Stuetzle and Mittal [1979, ‘Some Comments on the Asymptotic Behavior of Robust Smoothers’, in Smoothing Techniques for Curve Estimation: Proceedings (chap. 11), eds. T. Gasser and M. Rosenbalatt, Berlin: Springer, pp. 191–195], we propose a new version of LC by ‘twicing’ the local linear smoother (TLL). Both asymptotic theory and finite sample simulations suggest that TLL has better efficiency than LL. Compared with LC, TLL has about the same asymptotic MSE (AMSE) as LC at the interior points and has a much smaller AMSE than LC at the boundary points. The TLL is also more stable than LC and has better performance than LC numerically. The application of TLL to estimate the first-order derivative of the regression function and other extensions are considered.

Acknowledgements

We are grateful to two anonymous referees and Dr Thomas Yee for their constructive comments. This research was partially supported by the Education Department of Nature Science Research of Guizhou Province (grant no. 2010028), the Nomarch Foundation of Guizhou Province (grant no. 2010025), China, and a grant from the Risk Management Institute, National University of Singapore.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 912.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.