224
Views
4
CrossRef citations to date
0
Altmetric
Articles

Effects of zinc supplementation on metallothionein levels in ischemic renal tissue

, , &
Pages 285-296 | Published online: 27 Jan 2020
 

ABSTRACT

We investigated how zinc (Zn) supplementation affects metallothionein levels in the cortex and medulla of ischemic renal tissue of rats. We used adult male rats divided into four groups: group 1, untreated control; group 2, sham-operated; group 3, ischemia-reperfusion; group 4, ischemia-reperfusion + 5 g/kg Zn. Renal tissue was analyzed using immunostaining of rat metallothionein. Cells stained with metallothionein were counted and their percentage was calculated. We found that the Zn supplemented ischemia and reperfusion group exhibited a greater percentage of cells stained strongly for metallothionein in the renal cortex than all other groups. In the renal medulla, percentages of weak staining for metallothionein in the control and ischemia and reperfusion groups were greater than those in the sham and Zn-supplemented ischemia/reperfusion groups. Our findings indicate that the main effect of Zn in the renal tissue occurs in the cortex, while metallothionein synthesis in the renal medulla is unaffected.

Acknowledgments

This study was supported by the Scientific Research Projects Coordinatorship of Selcuk University (SUBAPK; project no. 13102019).

Declaration of interest

Authors declare no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.