475
Views
1
CrossRef citations to date
0
Altmetric
Articles

The effects of hypothyroidism and hyperthyroidism on placental Hofbauer cells of pregnant rats

ORCID Icon, , , & ORCID Icon
Pages 126-135 | Published online: 13 Apr 2021
 

ABSTRACT

We investigated the effects of maternal thyroid disorders on Hofbauer cells of both the placenta and the fetus in pregnant rats. We divided 21 rats into three groups: control group, induced hypothyroidism (hypo) group and induced hyperthyroidism (hyper) group. Hypothyroidism was induced using propylthiouracil and hyperthyroidism was induced using L-thyroxine. We measured maternal weight, maternal free thyroxine, fetal weight, fetal viability and placental morphology. At the end of the experiment, fetuses of the hypo and hyper groups were less developed than those of the control group. In the hypo and hyper groups, the thickness of the labyrinth zone was decreased, but thickness of the basal zone and decidua basalis was increased. The number of Hofbauer cells was increased in both the hypo and hyper groups. Vascular endothelial growth factor expression was increased in both the hypo and hyper groups compared to controls. Our findings indicate that maternal thyroid disorders exert a negative effect on fetal growth and placental development.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Our study was supported by Dokuz Eylül University [2016.KB.SAG.032].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.