157
Views
2
CrossRef citations to date
0
Altmetric
Regular article

Nonmonotone globalization of the finite-difference Newton-GMRES method for nonlinear equations

&
Pages 971-999 | Received 05 Oct 2007, Accepted 04 Sep 2009, Published online: 02 Nov 2009
 

Abstract

In this paper, we study nonmonotone globalization strategies, in connection with the finite-difference inexact Newton-GMRES method for nonlinear equations. We first define a globalization algorithm that combines nonmonotone watchdog rules and nonmonotone derivative-free linesearches related to a merit function, and prove its global convergence under the assumption that the Jacobian is nonsingular and that the iterations of the GMRES subspace method can be completed at each step. Then we introduce a hybrid stabilization scheme employing occasional line searches along positive bases, and establish global convergence towards a solution of the system, under the less demanding condition that the Jacobian is nonsingular at stationary points of the merit function. Through a set of numerical examples, we show that the proposed techniques may constitute useful options to be added in solvers for nonlinear systems of equations.

Acknowledgements

The authors are grateful to two anonymous reviewers for their comments and suggestions. This work was partially supported by MIUR Research Programme PRIN 20079PLLN7, Nonlinear Optimization, Variational Inequalities and Equilibrium Problems, Roma, Italy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,330.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.