151
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

The parallel solution of dense saddle-point linear systems arising in stochastic programming

, &
Pages 845-864 | Received 26 Oct 2010, Accepted 01 Jul 2011, Published online: 03 Oct 2011
 

Abstract

We present a novel approach for solving dense saddle-point linear systems in a distributed-memory environment. This work is motivated by an application in stochastic optimization problems with recourse, but the proposed approach can be used for a large family of dense saddle-point systems, in particular, for those arising in convex programming. Although stochastic optimization problems have many important applications, they can present serious computational difficulties. In particular, sample average approximation (SAA) problems with a large number of samples are often too big to solve on a single shared-memory system. Recent work has developed interior-point methods and specialized linear algebra to solve these problems in parallel, using a scenario-based decomposition that distributes the data, and work across computational nodes. Even for sparse SAA problems, the decomposition produces a dense and possibly very large saddle-point linear system that must be solved repeatedly. We developed a specialized parallel factorization procedure for these systems, together with a streamlined method for assembling the distributed dense matrix. Strong scaling tests indicate over 90% efficiency on 1024 cores on a stochastic unit commitment problem with 57 million variables. Stochastic unit commitment problems with up to 189 million variables are solved efficiently on up to 2048 cores.

AMS Subject Classification :

Acknowledgements

We are grateful to Jack Poulson, the main developer of Elemental, for his guidance in both implementation and development of the factorization procedure, and to Peter Strazdins for informative discussions. This work was supported by the US Department of Energy under contract DE-AC02-06CH11357.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,330.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.