Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 77, 2005 - Issue 1
81
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

STRAIN TENSOR EFFECTS ON SrTiO3 INCIPIENT FERROELECTRIC PHASE TRANSITION

, , &
Pages 173-187 | Received 17 Apr 2005, Published online: 11 Oct 2011
 

ABSTRACT

Structural distortion of ferroelectric thin films caused by film strain has a strong impact on the microwave dielectric properties. SrTiO3 thin films epitaxially grown on (110) DyScO3 substrates using molecular beam epitaxy (MBE) are extremely strained (i.e., ∼ 1% in-plnae tensional strain) from 3.905 Å of bulk SrTiO3. The room temperature dielectric constant and its tuning of the films are observed to be 6000 and 75% with an electric field of 1 V/μ m, respectively. The control of strain in SrTiO3 provides a basis for room temperature tunable microwave applications by elevating its phase transition peak to room temperature. Also, a significant in-plane anisotropy in dielectric constant and tuning was observed in these SrTiO3 films. The observed in-plane anisotropic dielectric properties have been interpreted based on the phenomenological thermodynamics of film strain.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Jeffrey H. Haeni and Darrell G. Schlom at Pennsylvania State University for providing the SrTiO3 film samples.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,157.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.