Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 121, 2010 - Issue 1
205
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Double Doping in Lead Zirconate Titanate (PZT) Lattices by Sol-Gel Technique for MEMS Applications

, , , , &
Pages 65-76 | Received 13 Dec 2009, Accepted 28 Apr 2010, Published online: 20 Nov 2010
 

Abstract

We report on the effect of double doping (La2+ and Sm3+) in PZT lattices in thin film form, keeping La (mol%) fixed at 8 mol% [Pb0.92-x La 0.08 Smx(Zr0.65Ti0.35)O3: x = 0, 0.02, 0.04, 0.06, 0.08]. Both the cation substitutions are being substituted at A site only. The thin films were grown on Pt/Si<111> substrates by sol gel technique. XRD diffractogram shows single phase for the films for x = 0.02. Thereafter, an unidentified phase starts appearing which increases with further substitution of Sm3+. Surface morphology was studied using atomic force microscope (AFM). The films show well-defined ferroelectric behaviour. The dielectric constant decreases with Sm substitution initially and then increases slowly as the Sm substitution is increased but never attains the pure PLZT (8/65/35) dielectric value. The loss tangent (tanδ) initially increases and then decreases. The phase transition temperature (Tc) increases drastically with 2 mol% Sm substitution and decreases slightly as the Sm substitution is increased further. The I-V behaviour shows a consistent shift towards the –ve bias voltage as the Sm substitution is increased from 2 mol% to 8 mol%. The logI-logV curve show ohmic behaviour with the electrode for all the samples. The P-E loop shows more hysteresis for the 2 mol% Sm substitution. The appearance of P-E loop qualitatively shows the piezoelectric nature of the films. Optical band gap was calculated from transmittance studies using a UV-Vis-NIR spectrophotometer. The optical band gap was estimated from (αhυ)2 vs hυ curve. The band gap decreases first with Sm substitution and then increases as the Sm substitution is increased. The results are discussed.

Acknowledgments

We are grateful to K. Zimik, Laser Science and Technology Centre, Metcalfe House, Delhi for doing AFM measurements. We also thank Dr. V. R. Balakrishnan and Anshu Goyal for their help in I-V and XRD measurements respectively.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,157.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.