126
Views
0
CrossRef citations to date
0
Altmetric
Articles

Poly(Butylene Terephthalate) Filled with Sb2O3 Nanoparticles: Effects of Particle Surface Treatment, Particle Size, Particle Morphology and Particle Loading on Mechanical Properties of Composites

, , , &
Pages 141-159 | Received 12 Oct 2019, Accepted 03 Feb 2020, Published online: 05 Aug 2020
 

Abstract

Poor dispersion of nanoparticles in polymer matrix would limit the development and application of particulate-filled polymer composites. Therefore, the Sb2O3 nanoparticles were functionalized by a combination of cetyltrimethyl ammonium bromide (CTAB) and silane coupling agent KH-560 via water bath modification method so as to improve the dispersion of Sb2O3 nanoparticles in poly(butylene terephthalate) (PBT) matrix and enhance the interfacial adhesion between nanoparticles and polymer matrix. Besides, the coating efficiency of compound modifiers on the surface of Sb2O3 nanoparticles was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA). The Sb2O3 nanoparticles with different morphologies were systemically measured using transmission electron microscopy and dynamic light scattering measurement. The effects of particle surface treatment, particle size, particle morphology and particle loading on mechanical properties of composites were studied by the X-ray diffraction (XRD), tensile test machine and impact strength machine. The tensile strength of nanocomposites gradually increases with decreasing the particle size at the same amount of Sb2O3 nanoparticle fillers, which is attributed to improvement of interfacial contact area and stronger interfacial adhesion between Sb2O3 nanoparticles and PBT matrix. And the compound modified Sb2O3 nanoparticles are homogeneously dispersed in PBT matrix and play an important role in the properties enhancement. Moreover, taking consideration of the tensile and impact strengths, the optimal loading is 3 wt%.

Additional information

Funding

This investigation was supported by National Natural Science Foundation of China [grant number 51761025] and the Science and Technology Program Project Funds of Gansu Province of China [grant number 17CX2JD075].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,157.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.