Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 226, 2022 - Issue 1
101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of Multiscale-Alumina Particles Reinforced Copper Matrix Composites with High-Energy Ball Milling and Hot Pressing

, , , , &
Pages 113-124 | Received 23 Sep 2021, Accepted 20 Feb 2022, Published online: 03 Jun 2022
 

Abstract

Cu-Al2O3 composite materials combining the good electrical of copper matrix and the high hardness of Al2O3 ceramic particles show great performance in electronics, electrical sliding contacts fields. However, the relationship of a dilemma between strength and ductility has become a limitation for the development of copper matrix composites. The previous works indicated that fine grain powders can improve interfacial bonding between the copper matrix and Al2O3 particles to further enhance strength while maintaining ductility. In the present work, the multiscale-alumina particles reinforced copper matrix composites were successfully fabricated by mixing high-energy ball milling and consolidation of hot-press sintering. SEM and TEM were used to observe the powder morphology and microstructure of Cu-Al2O3 composites. The results show that the reinforcing phase Al2O3 particles are uniformly dispersed in the copper matrix, which improves interfacial bonding between the copper matrix and Al2O3 particles. Especially, the micro Al2O3 particles play an important role in achieving an excellent tradeoff of strength and ductility in the Cu-Al2O3 composite. In addition, the microhardness of Cu-Al2O3 composites can be greatly improved by using the high-energy ball milling and hot-press sintering process. The research idea of this paper can provide a reference for other composite materials that need to improve mechanical properties.

Additional information

Funding

This work was financially supported by the Program for Innovative Research Team (in Science and Technology) in the University of Yunnan Province (No. 14051693), the Basic Research Project of Yunnan Province (No. 202021AS070049 and No. 202102AB080004).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,157.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.