Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 237, 2023 - Issue 1
77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Research on the Performance Improvement of GaN-Based Ultraviolet Light-Emitting Diode Chips with Magnetron-Sputtered AlN Nucleation Layers

, &
Pages 85-93 | Received 10 Jan 2023, Accepted 18 May 2023, Published online: 10 Sep 2023
 

Abstract

In this paper, the influence of magnetron-sputtered AlN nucleation layers with different thicknesses on ultraviolet (UV) light-emitting diode (LED) chips is studied. First, magnetron-sputtered AlN layers with thicknesses of 8, 25, and 42 nm were prepared on a patterned sapphire substrate (PSS). Subsequently, a 2.8 μm-thick GaN layer was epitaxially grown. We found that when the magnetron-sputtered AlN was 25 nm thick, GaN had the best crystal quality and morphology. Therefore, we grew an 800 nm GaN layer on PSS to analyze the initial growth mechanism of the material. The scanning electron microscopy (SEM) images showed that when the thickness of the sputtered AlN layer was 25 nm, the GaN grains on the sidewall of the PSS cone were the least abundant. In addition, according to the selected area electron diffraction (SAED) test, the (011) crystal plane of GaN appeared on the sidewall of the PSS cone. The (011) crystal plane is the semipolar plane of GaN, which is not conducive to the growth of polar GaN materials. Finally, on this basis, we fabricated UV-LED chips. Among them, the UV-LED chips with the 25 nm magnetron-sputtered AlN layer exhibited the best electrical and optical performance. Overall, this work provides a pathway to improve the performance of UV-LED chips.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was funded by the National Key R&D Program of China (Grant No. 2016YFB0400800), the National Natural Science Foundation of China (Grant No. 61634005), and the Key R&D projects of Shaanxi Province (Grant Nos. 2018ZDCXL-GY-01-07 and 2018ZDCXL-GY-01-02-02).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,157.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.